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1. Introduction

Reservoirs serve as a lifeline in water management (e.g., irrigation, hydropower generation,
water supply, and flood control), especially under the ongoing fast population growth and
changing climatg¢Biemans et al. 2011; Cooke et al. 2016; Plate 2002; Schewe et al. 2014;
Veldkamp et al 2017) Globally, reservoirs supply about 40% of the total irrigation water
demand(Biemans et al. 2011and contribute to more dm 60% of renewable energy via
hydroelectricity(Murdock et al. 2019)Reservoir storage varies according to natural climate
variability as well as the human water use/dach for different sectors (i.e., domestic,
agricultural, and industrial). On one hand, near-tiea¢ reservoir storage monitoring is
essential for mitigating the negative effects of hydimatic extremes (droughts and floods)
(Mehran et al. 2015; Zhou 202n the other hand, longnmn records of water retained by
global reservoirs can help to evaluate the human impacts on global and regional water cycles
(Yigzaw et al. 2018; Zhou et al. 2016Jowever, beaase gauge observations for reservoir
storage (and/or elevation) are typically not shared, both of the aforementioned data needs are

difficult to satisfy at regional and global scales.

Among the reservoir water budget terms, reservoir evaporation accounts for a substantial
amount of the loss of available waleparticularly for reservoirs in arid/serarid regions
(Friedrich et al. 2018)For example, the evaporation volume of Lake Tahoe (located in the
western U.S.) represents 4 (Fed&ldeval.@2018)thédhe t ot
annual evaporation rate of Lake Mead is ~1800 mm/§iareo 2015)which greatly exceeds

the surrounding evapotranspiration rate (~50 mm/y@am) et al. 2011) At a regional scale,

the water losses due to evagion for 200 reservoirs in Texas are equivalent to 20% of their
active storage valuZhang et al. 2017)Thus, it is crucial to imarporate information about
reservoir evaporation losses into existing water management practices. Nonetheless, because
reservoir evaporation information obtained through reliable in situ measurements (e.g., eddy
covariance, energy balance) is hard to aeqgyian evaporation data (which is less accurate due

to the lack of consideration of heat storage and fetch effects) have been commonly used as an
approximation(Friedrich et al. 2018)For most developing countries, even data about pan

evaporation (or its equivalent) are not available.

This is the Algorithm Theoretical Basis Document (ATB@r)theglobalModerate Resolution
Imaging SpectroradiometéMODIS) reservoirproduct The reservoir product is available at
two temporal resolutions:-&ay (MxD28C2) and monthly (MxD28C3). Here, MxD stands for



the fact thatthe productcomesfrom both Terra (MOD)and Aqua (MYD) satellites The
objectives of this ATBD are: (1) to give larief review of the current methodssedfor
monitoring reservois using satellite observatign§?) to describethe MODIS reservoir
algorithns, which are used to generate the produtivattemporal resolutions (i.e.;day and
monthly); (3) to introduce the required input datasetd parametey¢4) to show the validation
resultsfor thatreservoir area, elevatipatorage, and evaporation raéad(5) to discusghe

sources of produetncertainty

2. Overview and TechnicalBackground

Satellite remote sensing provides an alternative for filling in such reservoir data gaps. Since
the 1990s, satellite radar altimeters have been utilized to measure the water leveldakdarge
and reservoirgBirkett 1995) To date, several databases have been developed to monitor the
water levels of inland water bodies at a global scateluding the GlobBReservoir and Lake
Monitor (G-REALM) (Birkett et al. 2011)the Hydroweb databag€rétaux et al. 2011 pand

the Database for Hydrological Time Series of Inland Waters (DAH8dhwatke et al. 2015)
Meanwhile, the global surface area variations oé$a&nd reservoirs have been assessed from
various satellite instruments, such as the Landsat and M@Dtchyts et al. 2016;
Khandelwal et al2017; Ling et al. 2020; Pekel et al. 2016; Yao et al. 2019; Zhao and Gao
2018) Pekel et al(Pekel et al. 2016)eveloped a Global Surface Water (GSW) dataset using
expert system classifiers based on Landsat observations obtained over ttinedadecades.

The more recently published Global Reservoir Surface Area Dataset (GRSAD) provides
monthly water area values for over 7000 reserv@fiisao and Gao 2018Wwhich were
generated by correcting the underestimations due to cloud contamination in the GSW dataset.
Khandelwal et al(Khandelwal et al. 2017Qenerated 8lay composite water area time series
datasets for 94 reservoirs using MODIS multispectral data at 50@soiution. In the
meantime, many studies have focused on generating sdbelieal reservoir storage
estimations by combining elevation and area observations collected from multiple missions
(Busker et al. 2019; Crétaux et al. 2011; Gao et al. 2012; Zhang et al. ROl dxample, Gao

et al.(Gao et al. 2012nonitored storage values for 34 global reservoirs from 1992 to 3010 b
combining water surface areas from MODIS with water elevations from satellite radar
altimetry (which represented 15% of the total global reservoir capacity during that period). The
Hydroweb databaséifp:/hydroweb.theidand.fr)) estimates the storage changes for about 60

large lakes and reservoirs beginning in 1992, using fsalirce satellite imagery (e.g., MODIS

and Landsat) and radar altimetry dé@rétaux et al. 2011)More recently, Busker et al.
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(Busker et b 2019)analyzed the monthly volume variations between 1984 and 2015 for 137
lakes and reservoirs at a global scalecbmbining water area values from the GSW dataset
(Pekel et al. 2006and elevation values from DAHITSchwatke et al. 2015)

Meanwhile, some new approaches have been recently developed to estimate evaporation rates
and losses from space. For instarideang et al. (2017¢stimated the monthly evaporation
volumes based on paterived evaporative rates and Landsat surface areas for more than 200
reservoirs in Texaghao and Gao (201@sed the Penman Equation (with the heat storage and
fetch effects addressed), and generated a firsttenmg evaporation data record for over 700
reservoirs in the Contiguous United &&Zhao et al. (2020urther improved the calculation

of the heat storage change term by leveraging MODIS surface temperature data. Many other
approaches were developed and tested at individual locéfitiheff et al. 2019; Meng et al.

2020; Mhawej et al. 2020)

Despite the development of remotely sensed reservoir datasets, consistent, comprehensive,
long-term, and operationally monitored reservoir products are still lackirgeaglobal scale.
Therefore the newly developed NASA globd@ODIS water reservoir product (MxD2&an

fill in this knowledge gap

3. MxD28 Algorithm Descriptions

The MxD28Q product includes theeservoirarea, elevation, and storage result8-aay
temporal resolutionFigurel shows thdlowchartfor generating the MxD28C2 produdthe
algorithms corresponding to both products are explained in the following seé€liststhe 8

day reservoir area values were extracted from then2Bblear InfraredNIR) band of MODIS
Terra/Aqua surface reflectance (MxD09Q1) data. Then, the area values were applied to the
AreaElevation (AE) relationship for the given reservoir provided by the GRBDet al.

2020) to calculate the corresponding elevation values. Lastly, the reservoir storage was
estimatedhfterGao et al. (2012)

8-day MODIS 8-dav Area i 8-day
reflectance cIassuf)rcatlons 8-day Area . . Elevation
(MxD09Q1) & Storage

Figure 1. Flow chart of the algorithm for deriving the MxD28C2d8y) product. Thgreen

boxes represent the product components.



The MxD28C3 product includes the evaporation rate and volumetric evaporation loss in
addition to the area, elevation, and storage results at monthly temporal reséligion.2

shows thdlowchartfor generating the MxD28C3 monthly product. The monthly area values
were first estimated based on the composite of HuayBarea classifications, and then
converted to monthly elevation and storage results using #Bedationship(Figure 2). In
addition, monthly evaporation rates were estimated after the Lake Temperature and
Evaporation Model (LTEM)Zhao et al. 2020)ising MODIS LST product (MxD21A2) ah
meteorological data from the Global Land Data Assimilation System (GLDR&)ell et al.

2004) Lastly, the monthly evaporative volumetric losses were calculated as the product of

evaporationate and reservoir area values.

Monthly
Monthly Area . : Elevation
& Storage

8-day Area Monthly Area
classifications composites

A 4

MODIS LST | |
Monthly Monthly
(MxD21A2) & » Evaporation Evaporation
Meteorology Rate Volume
data (GLDAS)

Figure 2. Flow chart of the algorithm for deriving the MxD28C3 product, which contains

monthly area, elevation, storage, evaporation rate, and volumetric evaporation loss results for

the 164 reservoirs. The green boxes regméthe product components.

The detailed algorithms for generating reservoir area, elevation, storage, evaporation rate, and

evaporation volume are explained in the following subsections.

3.1 Algorithm sfor reservoir area

3.1.1 Algorithm for MxD28C2 (8-day Product)

The algorithmfor estimation of reservoir areia explained using the following steijas

illustrated inFigure3).
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Figure 3. Flowchart for thehe Image Enhancement Algorithm.

1. Mask creation: For a given reservoir of interest, the shapefiles from HydroLAKES
(Messager et al. 201@nd OpenStreetMafilaklay and Weber 2008)ere compared and
the one with the larger area was selected. By leveraging theshapefiledatasets, the
possible underestimations fragither of them can be eliminatdtishould be noted that we
manually corrected some polygons that were found to have large discrepancies from
Google maps. These alterations are reparidd et al. (2020) The reservoir mask was
then generated by buffering the selected shapefilwaydtby 1000 m. This buffering
approach allowed the mask to include all possible water {i&als et al. 2012All of the
subsequent steps were executed within the masked region.

2. Otsu classification For each of the MODIS NIR image, the contaminated pixels (i.e.,

cloud, cloud shadow, or snow/ice) were removed by using the quality assurance (QA) band



of MODO09QL1. Then, the Otsu thresholding metl{@tdsu 1979was applied to the clear
pixels for classifying the raw water area.

. Enhancement decision.The contamination percentage (CP) were calculatecedch
image using the number ofmaminated pixaldivided by the total number of pixels inside

of the reservoir mask. If CP 60%, which indicating severe contamination of the NIR
image, the raw water area was discarded and the water area was reparechass si n g o
value(i.e.,-9999).1f CP < 15%, the image was regarded as clear image and the raw water
area was reported as the final water area for tuiay8timeframe. Otherwis@d5% OCP

<60%), the following enhancement algorithm waesrformed

. Percentile image creationThesurfacewater occurrence (value ranges from 0% to 100%)
image from global surface water dataseS\WD, Pekel et al. (201§)was resampled from

its original 30m resolution to MODIS 250m resolution. Then it was grouped into 50 zones
based on the occurrence values, using a
threshold (of 2%) allowed us to narrow down the differences among pixels within a given
zone. In other words, all the pixels within the same zone indicate that they have a similar
possibility of being classiyed as water.
. Water fraction calculation (by zone): Zonal water coverage maps are created for each
classification image overlaying the percentile mask image on it (shokigune4, rows a

and b). The percentage of water pixels within each zone is calculatedEgsiagon (1):

€ . .

n l,),—h ‘Q phcB hQ p
where¢ is the number of pils in thei zone that are classified as water (according to the
MODIS NIR classification)j is the total number of pixels in th® zone (according to
the delineation of theercentileimage), andQis the total number of zones. In the

simplification example, thg value for zone 1, zone 2, and zone 3 are 15/16, 6/9, and 0/3,

respectively.
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Classification image Zone 1 Zone? Zone 3
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M Pixel of mask imagein Zonel [ Pixel of mask image in Zone 2
B Pixel of mask image in Zone3 [l Water pixel [ Non water pixel

[ ] Pixels within one black box belongs to the same image

Figure 4. A simple example showinthe classification image enhancement process: (a)
dividing the mask file into multiple zones (i.e., three zones in this example); (b) assigning
zone values to the classified image; and (c) enhancing the classified image based on image
quality.

Image quality assessmentA quality parameterd() is computed for each classification

image according t&quation (2).

CR
3
N

0 is a measure of the overall consistency of the surface water classification from a MODIS
NIR image. Giver is from 0to 10 has a range between 0 to 0.25. Thealue increases

as the quality of a water classification image increases. If a ctagifi is of high quality,

then then) values for the zones classified as water should be 1 (or close to 1), while the
values for the zones classified as land should be zero (or close to zero). In the case of an

ideal classification (i.ef) equal or close to 1 or O for alvalues), th& value is close to
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the maximum (0.25). In contrast, if a classification image is of very low quality) the

values for most of the zones should be close to 0.5 (0.5 represents the case of a random

distribution of water pixels within a zone). As a result, thealue is close to zero for a
low-quality image. For the sample classification illustratedFigure4, its0 value equals
to 0.156.

7. Classification image enhancemenforeachzone€ 1 ,  X)withén,one classification
image, if itsf] value is larger than a threshéithen all pixels in thg"zone(j ranges from
i+1to k) are set as water. The threshofés determined according sguation (3):

&

vy : 3)

ca CR

5
n
where ) is the median of all the values within one classification image, andand

0 are each constant parameters. The threshold Vdlae each image is based on its

quality 0: if O is larger thard , then“Yis equal ta® : otherwise;Yequalsr . Calibrated

over two reservoirs where observations are available (i.e., the Pong and Hirakud

reservoirs)0 and0 are setto 0.7 and 0.1, respectively. The enhancement process for this

simplified example is illustrated Higure4 (row c). Given that thé value(d = 0.156) of
the classification image is larger than (6 =0.1), the thresholdvis set to 0.7. &t this
classification image, sincg (1 = 0.94) is larger thafiy("Y= 0.7), all pixels in zone 2

and zone 3 are assigned as water.

This classification image enhancement is based on two principles. First, a good
classification image should have good consistdntyeaning pixels in the same zone

should have the same classification results. Second, pixels in the zones with a higher
percenile should have a greater possibility of being classified as water than those in zones

with lower percentile values. This means that if the probability that a zone is covered by

water exceeds the threshdldasdefined in Equation (3)) all pixetsf the emaining inner

reservoirzones are labeled as water.
3.1.2 Algorithm for MxD28C3 (Monthly Product)

The monthly enhanced area values were estimated similaridag @oduct but based on the
composite of the-8lay area classificationd. pixel was assigneds a water pixdf this pixel

was classified as water any of the 8ay imagesithin this monthThi s A max o

comp

approach might slightly overestimate the monthly mean water area value. However, given that
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the water area variatiomithin a month § relatively smallfor large reservoirgexcept when
there is flooding) the monthly area time series can adequately represent thdefomg

dynamics of the reservoir.

3.2 Algorithms for reservoir elevation and storage

The enhanced area valu@s ) were applied to the AreBlevation (AE) relationship
(Equation §)) to calculate the corresponding elevation val(&s ). For each given
reservoir the AE relationship function;Q , was adopted fronthe Global Reservoir
Bathymetry Dataset (GRB Li et al. (2020).

Q "Q0 (4)

The correspondingeservoir storage can be estimated udtogiation (5) éfter Gao et al.
(2012):

w w 0 O N Q iq v
wherew, 0 , and'Q represent storage, area, and water elevation values at capacity; and

0 , and’Q are the estimated storage, area, and water elevation from MODIS.

3.3 Algorithm s for evaporation rate and evaporation volume

The detailed algorithm for the evaporation rate and volumetric evaporation loss (for

MxD28C3) is explained in following sections.
3.3.1 Generating water surface temperatur¢ WST) value

Similar to the monthly water arealculation the WST value for each month was calculated
using the monthly composite 8fdayLST images (i.e., MOR1A2 and MYD21A2). For each
month, a composite image was first created by averagingdlag 8ST images ithis month.

Then, he two bands (daytimeST and nighttimed_ST) wereaveraged to generate the monthly
mean LST image. Since the daily temperature variations roughly follow a sinusoidal curve, the
average of the MODIS daytime and nighttime temperatures (1:30/13:30 local time for Aqua
and 10:30/22:30 for Terra) can effectiveepresent the mean daily temperature.

The reservoir average WST was then calculated by averaging the LST pixelthatueserlap
with the raw water area (generated in Section 3.1.2). Because the raw water area has a
resolution of 250m and LST imagasa resolution of 1km, the raw water areagewas up

scaled tdLkmresolution For each 1km pixel (overlapping with 16 pixels in 250m resolution),

11



the percentage of water area inside of this pixel was calculated. For example, if there are 9
pixels out ¢ 16 in the 250m image is classified as water, then the water area percentage of this
1km pixel is 9/16 = 56.25%. In order to reduce the impacts of mixed pixel in the LST image
on the average WST value, we only selected the 1km pixels that have wateerasrdage

greater than or equal to 75% (i.e., at least 12 water pixels in 250m resolution).
3.3.2 Calculating evaporation rate time series using LTEM
The evaporation rate calculation in LTEM is based on the Penman equation, with the wind

function represented aftéhao and Gao (2019Equation6):

O

¢

whereOis the open water evaporation rate (mi):& is the slope of the saturation vapor
pressure curve (kPa-“; 'Y is the net radiation (MJ-!d™?); "Ois the heat storage change of
the water body (MJ-rid?); [ is the psychrometric constant (kPa®C'Qo is the wind
function that is dependent @aservoirfetch (MJ-m?.d1-kPa') (McJannet et al. 2012 is

the saturated vapor pressure at air temperature (RP&)the air vapor pressure (kPa); and

is the latent heat of vaporizati (MJ-kg'). The Penman equation and its variants (e.g., the
PenmarMonteith equation) have been widely employed for potential evapotranspiration as
well as for open water evaporation estimatigvisJannet et al. 2008; McMahon et al. 2013;
Tanny et al. 2008)

However, there are two key factors that chée be considered when applying the Penman
eguation to open water evaporation estimation. The first is associated with the meteorological
data that are used to drive the Penman equation. Ideally, the meteorological data should be
directly collected overe water surface. However, due to the difficulties, logistics, and costs
associated with acquiring measurements over water, most studies have employesdahd
meteorological data as a substit(D®s Reis and Dias 1998; McJannet et al. 2012; Winter et

al. 1995) Direct use of lankbased meteorological data in the Penman equation is likely to
result in a biased estimation, given the meteorological differences between land and water areas
(Weisman and Brutsaert 1973pecifically, when air moves from land across the water body,

its humidity gradually increases due to the evaporation processes on the water Sargace.

will lead to decreasing evaporation fluxes in the downwind direction.

12



To solve this problemyicJannet et al. (2012)eveloped a generally applicable wind function
that facilitates the opewater evaporation rate calculation using standard -besdd
meteorology. This empiricélinction uses a fetch length to include the effect obacoming
moister when moving from land to water surfaégyation?):

M6 _ cdoppo O ° X

where™Q6 s the wind function (MJ-rd-d*-kPa); 6 is the wind speed at the height of 2 m
(m-sh); andb is the fetch length of the water body (m). The coefficients in Equativere
identified by regressing and0 against data from 19 previously published wind functions,
which represent a range of water bodies with various sizes andelditiongMcJannet

et al. 2012) Because the wind speed values from reanalysis datasets arallgereported at

a 10m height, they were converted ten2values using the standard grass surface roughness
(Allen et al. 1998) Openwater roughness was not used in order to be consistent with the

generalized wind function froifMcJanret et al. 2012)

The fetch length was calculated for each reservoir and each ntogting5). With a given
wind direction (monthly dominant wind direction derived frdlf@EP/NCAR Reanalysis data
Kalnay et al. (1996) the width is defined as the distance between the two res¢angient
lines that are parallel to the wind direction. Then fetch leagth calculated by dividing the
total area with the width.

Reservoir

Figure 5. Calculation of the reservoir fetch for a given wind direction.
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The second key factor to be considered when applying the Penman equation to open water
evaporation is the heat storage quantification. For instaeservois tend to store heat in the
spring/summer and release heat in the fall/winter. Without considéigigeat storage effect,

the evaporation rate would be overestimated in the former and underestimated in the latter.

In the following subsections (3.3.2.1 to 3.3.2.3)geviocused on explaining the new approach

for quantifying the heat storage changet¢hat leverages MODIS WST data. The heat storage
changes”Q can be calculated using temperature profile data for two consecutive time steps
(Equation8; Gianniou and Antonopoulos (2007)

o LA . RO RRO YR Ad Wy

0 Ao

whered is the surface area of the water body)(rais the current time step (d); f is the
density of water at deptihand timeo (kg-m3); @ ,, is the specific heat of water at degth
and timeo (J-kgt-°C?), 6  is the water area at depitand timeod (m?); “Y; is the water
temperature at depthand timeo (°C); andO is the total depth of the water body at tilne

(m).

To simulate the temperature profile for each time stépft & O andm o ‘OO0 Pin
LTEM, we integrated MODIS WST data into thédlHostetler Mode(Hostetler and Bartlein
1990) In this subsection, we first explain tfeservoirenergy budget term8.8.2.1) and then

the Hostetler Model3.3.2.9, which were used to facilitate temperature profile and evaporation
rate simulation in LTEM3.3.2.3.

3.3.21 Reservoirenergy budget terms

The evaporation process ofeservoirinvolves both energy fluxes at the water surface and
energy transfein the water bodyFigure6).

14



WwWind — Kin Kout Lin Loyt LE H
1
[ Ilce cover ]"_"_"Wét_e_r_ski_ﬁ ———————————————————
Skin-bulk heat exch
NIR INn-pu eal exchange
Eddy diffusion
PAR Molecular diffusion

Figure 6. Schematic of the Lake Temperature and Evaporation Model (LTEM) model, which
involves both energy fluxes at the water surface and energy transfer in the water body. PAR
and NIR represent photosynthetically active radiation and near infrared radiatpattiney.

Definitions for other energierms can be found in Equatiodsand b.

For a water body, the net radiatiovi ( MJ-ni?-d*) can be formulated aft&quation9:

Y 0 0 0 0 W
wherev ,0 ,0 , andd are surface incoming shortwave radiation (M3-d),
outgoing shortwave radiation (MJ%d™Y), surface incoming longwave radiation (MFd?),
and outgoingongwave radiation (MJ-rhd?), respectively. Among these ternis, can be

directly adopted from meteorological forcing inputs, while the others are calculated:an

be calculated using the water surface albeddallowing EquationlOafter(Subin et al. 2012)

T8t v .
8)) p T

VY KT

where—is the solar zenith ang(@hao and Gao 2019) (MJ-m?.d%) andd (MJ-m?2.d
1) can be calculatedsing Equationd 1 and12 after the StefairBoltzmann Law:
0 -, Y G XU PP

0 -, @YY Xxdu S
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where- is the emissivity of air with a cloudiness factor included (#@hao and Gao (2019)
- is the emissivity of water (0.97);is the StefasBoltzman constant (4.9xP0MJ-m?-K*.d-

hyand’Yi s the air temperature ( ).

The net shortwaveadiation @ 0 ) penetrates the water column and is absorbed
according to the Bedrambert Law. The net shortwave radiation is divided into
photosynthetically active radiation (PAR) and nedrared radiation (NIR). The transmitted
shortwave eergy at depthix (denoted a® ) can be calculated aft&guation13 (Ingle Jr and
Crouch, 1988):

b v 0 o2— Q ° —1q 2 0o

where— and— are the shortwave radiation fractions of PAR and NIR; and and
are the light attenuation coefficients of PAR and NIR. Aisecobedo et al. (2009}

and— are set to 0.54 and 0.46, respectively. is set to 1.4 m after Bowling and
Lettenmaier (2010)The_  value is provided by the user when direct light attenuation
measurements are ahadle, or it can be calculated from the Secchi depth measuretent (
in m) usingequationl4 (Devlin et al. 2008)Alternatively,_  can be empirically calculated
using the lak&eservoiraverage depth(, in m) afterEquation15 (Bennington et al. 2014;
Hakanson 1995Because Secchi depth data is not available at a global(§wakl the 164

reservoirs)we usedequationl5 here forcalculating_
Q@ & LV 0P8t ¢ T & PT

_ PP wu pu

Unlike shortwave radiation which can penetrate water, the incomingvbregradiationq )

is only absorbed by the water surface. Meanwhile, the surface also loses energy through
outgoing longwave radiatioy( ), latent heat flux{f ‘OMJ-n?-d%), and sensible heat flux

(0 MJ-mi%-d). In summary, for a given water body, the energgdeivescan be separated

into two parts based on locatiomwm: d))anche fdApe
2) the fAsur f a@@Ewhichasrdefined gfteEquatfon &1 x  (

00 0 0 00O PO
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3.3.2.2The Hostetler Model

To facilitate the calculation of temperature profile, the modified Hostetler Model scheme was
adopted fronBowling and Lettenmaier (201@ndSubin et al. (2012)The governing equation

for water temperature profile is denoted as a partial differential equétipration ¥):

TYe o1 o v .. g LA P PTUROH
7o dgf a " A TG dropr 1 G P X
where"Yj is the water temperature at degtland timeo; I is the molecular diffusivity

(1.39x10" m?-sY); I andll  are the ddy and enhanced diffusivities, respectively’-@n
b, 0 f is0 (Equation13) at timeo; ando j is the area at depthand timeo (which is
calculated using theeservoirbathymetry). FollowindHostetler and Bartlein (1990) j can
be calculated aftdequation B:

I’ 670 Q

I #r 5 ow py

wherell is the von Karman constant (0.4);is the surface shear velocity (which depends on
surface forcing and temperatukéickers et al. (2015) 0 is the neutral value of the turbulent
Prandtl number (1.0)Q is the Ekman profile parameter; aivdis the gradient Richardson
number. The detailed formulation for these parameters can be fotitustetler and Bartlein
(1990)

The enhanced diffusion is introduced by turbulence sources other thamnvied eddies,
such as surface water inflow/outflow, seiches, the horizontal tempegradient, and aquatic

life movementll can be written as Equatiod:1
[ | pgit pmm O 8 P W

where  is the enhanced diffusion coefficient@ p Tt IBennington et al. (201%)and

O is the BrumtVaisala frequency (§ (Fang and Stefan 1996; Subin et al. 20T2)e value

of| can be calibrated using temperature profile measurertighisset al. 1991)We used an
empirical value of 20 fgr for this MODISproduct We did, however, test the sensitivity of

| (using Lake Mead as an example) to find its impacts on the temperature profile and the

evaporation rate (Section 40éZhao et al. (2020)

For general Hostetler Model applications, the water temperature profiles are calculated after

Equation ¥ with 0 0 andO'Gs energy inputs. Then, the convection is implemented
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from the top layer to the bottom according to the temperdiased density gradient. For
instance, if an upper layer is denser than its adjacent lower layer (density calculated based on
temperature), then these two layers will be mixed and the resultingek&kaighted average
temperature will be assigned to both of them. This convection process is executed until there

is no inverse density gradient.
3.3.2.3Reservoirtemperature profile and evaporation simulation

The process at each time step is summaiizée following 6 steps (and in the flowchart in

Figure7):

1. Prior to the iteration at the current time step it was first assumed that there is no
heat storage effect in the Penman equation ©e.Q in Equation6). Thus, an initial
value ofO "@an be calculated, with ‘O _ ‘OandOcalculated afteEquation20

(with the same wind function as used in Equaépn
O e 0YY'"Y ¢ T

2. "Y; (t & O) can then be calculated using the Hostetler Model basédon
(m &a 'O ), along witho 0 ,'O"Qand the layer configuration derived from
the reservoirbathymetry.For the current version of the calculation, tmeservoir
bathymetrywas assumed to be cylindrical to avoid the impactesérvoirsediment
heating meaning the radiative energy will be trappedtl® bottom instead of

reflecting backn the shallow reservoirs

3. The remotely sensed skin temperature at tr@ "Y"Y was converted to the bulk
temperature”lY ) by considering the coalkin effect ¥'Y ) after Equation21
(Artale et al. 2002)Compared to the more complex formulation provideétdyall et
al. (1996) the formulation by(Artale et al. 2002)significantly simpifies the
computation and still produces satisfactory outgtitsand Tsuang 2005)

O '@rst Y ¢Or

1'% oYY YY 5 @YY 5

¢P

wherg is the thickness of the skin layer (m), a0 the thermal conductivity of water
(W-mt.K1). This bulk temperature represents the water temperature of the first water

layer right beneath the skin layer.
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4. If the simulated Y was different from theemotely sensety¥ & which indicated
that the initialO "Qvas biased ¥ was subtracted fror® "Qand Steps 2 and 3 were
repeated. This iteration was executed uidli, “Y  was smaller than (e.g., 0.01
°C).Y is definedas:

y abD"Y; Y CC
whered is the learning rate (e.d., or other irrational numbers).

5. After the model had converged (i.€Y; Y ), the heat storage chang®) (

was calculated followingquation8 (Gianniou and Antonopoulos 2007)

6. The evaporation raté&j was then calculated using the Penman equation (with the wind

function repesented) afteEquation 1lin Zhao and Gao (2019)

Meteorological
data

v

Shortwave radiation

Enhanced water Energy influx at the
—>
area surface

Water temperature
Lake . :
— Hostetler Model <«—7— profile at previous
bathymetry .
time step (t-1)

v
No Water temperature
profile at current time
step (t) Water surface
¢@ temperature
_~ Firstlayer . Bl‘.l”(
Yes " temperature = bulk <—
l’ temperature
~._tempeature -

Water temperature
profile at current time ® Heat storage ® ,
] Evaporation rate
step (t) change

Figure 7. Flowchart for calculating the water temperature profile flomp to 0, and the heat

A

storage and evaporationeat Green and blue colors indicate inputs and outputs, respectively.
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In summary, by implementing the above iterations, the water temperature profile at the
previous time step'{;; )0 and the water skin temperature at the current time &t€)g )6

can lead to the water temperature profile at the current time Stgp. (To get a stable
temperature profile time series, LTEM can be spun up for a sufficient period of time (e.g., 24
months), and then normal simulations can be stavisdimplemenéd LTEM at a monthly

time ste® meaning that we solved the temperature profile for each month, and then calculated
the evaporation rate for each month.

3.33 Calculating volumetric evaporation

After calculating the evaporation rate time series, the volicnefaporation can be inferred

by multiplying the evaporation rate with the surface abEgpition23).
w O o Co
whereQis the evaporation rate (mm/d) adds the enhanced watarea (km).

4. Input Datasets

The input datasets includlereecategoriesreservoirshapefils, input variablesand reservoir
parametersThe details otheseinputs can be found in the following stgections.

4.1 Reservoir shapefiles

The reservoir shapefilesere adoptedrom HydroLAKES (Messager teal. 2016) and
OpenStreetMafHaklay and Weber 2008)-or a given reservoir, the two shapefiles were
compared and the one with the larger area was selected. By leveraging these two shapefile
datasets, the possible underestimations fraheeof them can be eliminated. It should be
noted that we manually corrected some polygons that were found to have large discrepancies
from Google maps. Theurposes of theshapefilesare tweofold: for extracting the

meteorological data over the resergand for generating reservoir masks.

4.2 Input variables

The time varying input variables are from ott®DIS productsand meteorologicaldata,

which are summarized in Takle
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Table 1. Summary of the inputariablenames, sources and purposes used in this study

Data Spatial Temporal Purpose Reference
resolution resolution
Terra surface 250 m 8-day Water area | Vermote (2015)
reflectance extraction
(MODO09Q1)
Aqua surface 250 m 8-day Water area Vermote (2015)
reflectance extraction
(MYDO09Q1)
Terra LST 1 km 8-day WST Hulley and Hook
(MOD 21A2) extraction (2017)
Aqua LST 1 km 8-day WST Hulley and Hook
(MYD 21A2) extraction (2017)
GLDAS-2.1 0.25% 1-month Meteorological Rodell et al.
forcing data for| (2004) Beaudoing
LTEM and Rodell (2020

The land surface temperature contains day/night surface temperature for inland water areas.

(1) Inputs from other MODIS products

For MxD28C2, the &lay Terra/Aqua surface reflectance (MxD09Q1) data were collected for
water area extractiofermote 2015)Specially, only the neanfrared (NIR) band was used

due to its high spatial resolution (i.e., 250 m for MODIS). The NIR band has been commonly
utilized for the extraction of water bodies because it is strongly absorbed by water but scarcely
absorbed by terrestrial dry soil and vegetafidicFeeters 1996)The AE relationships were
adopted from GRBO(Li et al. 2020) which have proven to be of high quality through
validation against in situ data. Then, thda/ water area estimations were applied to tHe A
relationships to derive elevation and storage values. Moreweensed the -8lay day/night

land surface temperature (LST) products (MxD21K2jley and Hook (2017%)and Global

Land Data Assimilaon System (GLDASRodell et al. (2004)meteorological forcing data to

estimate the evaporation rates and volumes (see Section 3.3 for more detailed approach).

(2) Meteorologicd data

We obtained the meteorological data from the NASA Global Land Data Assimilation System
Version 2.1 (GLDAS2.1; Rodell et al. (2004)Beaudoing and Rodell (20200 drive the
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LTEM. In this version GLDAS is forced with a combination of model and observation data
from 2000 to present. For instance, it was forced with Nati@Quaanic and Atmospheric
Administration (NOAA)/Global Data Assimilation System (GDAS) atmospheric analysis
fields (Derber et al. 199]1}he dsaggregated Global Precipitation Climatology Project (GPCP)
precipitation fields(Adler et al. 2003) and the Air Force Weather Agency's AGRicultura
METeorological modeling system (AGRMET) radiation fields which became available for
March 1, 2001 onwards. We used monthly downward shortwave radiation (W/m2), air
temperature (in K), specific humidity (in kg/kg), and wind speed (in m/s) data from Na@r 20

to present, with a spatial resolution of 0.25 degree to drive the LTEM. For any reservoir
covering multiple GLDAS grids, the meteorological forcings were first averaged over those

grids.

4.3 Reservoir parameters

The following reservoir parameters are used for generating the products: storage at capacity,
elevation at capacitygurface area at capacitd;E relationship, average reservoir depind
average latitude. The detailed information for each reservoioisded in appendix AMore

details abouthe algorithns for generating the A relationshipsare available irLi et al.

(2020).

5. Results and Uncertainties

5.1Validation results

5.1.1 Comparing water surfice areas with Landsat measurements

At the global scale, lorterm in situ reservoir area records are still lacking. Therefore, we
compared the MODIS area values with Landsat based results (at a finer spatial resolution of 30
m) for purposes of area validation. The Landsat monthly resemasrvalues for all of the 164
reservoirs were collected froBlobal Reservoir Surface Area DataseRSAD, Zhao and Gao

(2018) between 2000 and 201&RSAD corrected the water area underestimation of the
GSWD datase{Pekel et al. 2016¢aused by both cloud contamination and the Lardsatn

line corrector failur§Zhao and Gao 2018Note that the Landsat based area estimdtioa

given month was based on the one or two images obtained during that month, while the monthly
MODIS area value was derived from the composite of tdayBclassification. However, due

to the deficiency of then-situ area values, we used this Landsased dataset to validate the

overall consistency of the MODIS area products.
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According toFigure8, the MODIS based area values agree well with the Landsat based results
(with an R value over 0.99). Additionally, the data points are mainly centered on the 1:1 line
(slope = 0.99). The disagreements that do exist can be attributed to two sources: The first is
because Landsat and MODIS collected data at different times. If a reseqeiirenced a large
change within a month, it may have caused a large area discrepancy. The second is related to
the low spatial resolution of MODIS, which makes it more susceptible to mixed pixels. This

can explain the area underestimations for relatigelgll reservoirs.
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Figure 8. The density plot of monthly area estimations between Landsat and MODIS from
February 2000 to December 2018 for the 164 reservoirs. Note thatatkie and yaxis

use a logarithmic scale, and there are a total of 37228 {B247 pairs.

5.1.2. Validating the MODIS elevation and storage products against in situ observations

For the elevation and storage validations, we collected in situ daily observations for twelve
Indian reservoirs (Ukai, Matatil&ana Pratap Sagar, Gandhi Sagar, Ban Sagar, Bargi, Hirakud,
Jayakwadi, Sriram Sagar, Nagarjuna Sagar, Yeleru, and Tungabhadra) from the Indian Central
Water Commissionhftp://cwc.gov.in) between 2000 and 2019.

The validation results of theday MODIS elevation and storage products are showigure

9 andFigurel0, respectively. Overall, the elevation estimations from MODIS agree well with
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thein-situ data Figure9), with an average Rvalue of 0.87, an avage RMSE value of 2.22

m, and an average NRMSE value of 12.28%. The biases (e.g., overestimation for Tungabhadra
and underestimation for Yeleru) are caused by a combination of mixed pixels of reservoir edge,
parameterization of the enhancement algorithnd,tae mismatch of MODIS water areas with
Landsat water areas, which were used to deriie ralationships for GRBIQLI et al. 2020)

With regard to the storage validatiom3gure10), they have similar patterns with those of the
elevation results because they were both derived from area time series. Validations against in
situ data show an averagéRilue of 0.88, an average RMSE value of 0.47,kand an average

NRMSE value of 13.20%.
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Figure 9. Validation of MODIS 8day elevation products for twelve Indian reservoirs from

2000 to 2019.
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Figure 10. Validation of MODIS 8day storage products ftwelve Indian reservoirs from
2000 to 2019.

Next, we validated the monthly elevation and storage products over these twelve Indian
reservoirs. The daily in situ elevation and storage values were averaged at a monthly step,
which were then compared to themthly MODIS productsKigurelland12). The validation

results show similar patterns as those of thaay products, but higher accuracies. This is
because the monthly reservoir area values were generated from the composited results of three
or four 8day reservoir areas from MxD28C2, and the composition process greatly reduced the
adverse effects of cloud contamination at th@a@ time step. As shown iRigure 11, the

MODIS based elevations show good consistency with the in situ measured data, with an
average Rvalue of 0.90, an average RMSE value of 1.99 m, and an average NRMSE value of
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